

RESEARCH CONFERENCES

ESF-EMBO Symposium

Bacterial Networks – Bacnet15

9 – 14 May 2015

Sant Feliu de Guixols, Spain

List of Accepted Posters

Nb	Firstname	Surname	Abstract_Title
1	Kadi	Ainsaar	The metal-sensing system CoIRS protects Pseudomonas putida against metal toxicity
2	Daniel	Angst	Cost/Benefit trade-offs of tetA expression
3	Monserrat	Argandona	Systems engineering in Chromohalobacter salexigens: Towards a regulatory network connecting ectoines production with central metabolism
4	Markus	Arnoldini	Bistable expression of virulence genes in Salmonella leads to the formation of an antibiotic tolerant subpopulation.
5	Ilaria	Benedetti	Engineering an orthogonal expression system for the rational design of catalytic biofilms with Pseudomonas putida KT2440
6	Tobias	Bergmiller	TBC
7	Katja	Bettenbrock	Correlation of NAD:NADH ratio, quinone pool and ArcA phosphorylation in E. coli mutants lacking NAD dehydrogenase I at varying oxygen supply
8	Emanuele	Biondi	Wiring the network: Cell cycle control by the master regulator CtrA in a symbiotic bacterium
9	Susan	Black	Protein-lipid interactions of MscS, a bacterial mechanosensitive channel
10	Sophie	Brameyer	Dialkylresorcinols as novel bacterial cell-cell communication molecules in the human pathogen Photorhabdus asymbiotica
11	Ana Rita G.	Brochado	Cross species comparison of drug-drug combinations
12	Daniel	Brown	Nitrogen stress response and stringent response are coupled in Escherichia coli
13	James	Brown	Adaption of Bacillus subtilis L-forms to hypotonic environments
14	Paolo	Brunotti	The dark side of HD-GYP phosphodiesterases revealed by the structure of Pa4781 from Pseudomonas aeruginosa displaying a bi-nuclear unselective metal binding site
15	Andrew	Cameron	Transcriptional activity is localized to specific chromosomal macrodomains in Salmonella enterica
16	Agamemnon	Carpousis	Conserved structural features and molecular physiology of the membrane-associated RNA degradosome.
17	Spyridoula	Charova	A triple protein complex couples T3SS expression and T3SS secretion in Pseudomonas syringae pv. phaseolicola
18	Muriel	Cocaign- Bousquet	Bacterial adaptation is influenced by genome-wide mRNA degradation
19	Asunción	Contreras	UNRAVELLING THE REGULATORY METWORK OF PIPX, A MULTIFUNCTIONAL, PROMISCUOUS, AND UNIQUE CYANOBACTERIAL FACTOR

20	Ignacio	Cota	Programmed heterogeneity: epigenetic control of O-antigen chain length in Salmonella enterica
21	Xavier	De Bolle	Cell cycle control of the Brucella abortus pathogen
22	Dries	De Maeyer	PheNetic: multi-omics data interpretation using interaction networks
23	Marie	Delaby	Regulatory interplay between cell cycle control and phosphate starvation in Caulobacter crescentus.
24	Nicolas	Delalez	Engineering tunable response dynamics in two-component systems
25	Felix	Dempwolff	Membrane domains at super resolution
26	Andreas	Diepold	In vivo dynamics and regulation of the type III secretion injectisome
27	Yann	Dufour	Mapping E. soli swimming behavior to chemotaxis protein counts in single cells.
28	Ulrike	Endesfelder	Quantitative and correlative single-molecule localisation microscopy imaging in E.Coli
29	Brice	Enjalbert	The post-transcriptional regulatory system CSR controls the balance of metabolic pools in upper glycolysis of Escherichia coli.
30	Marc	Erhardt	The Bacterial Flagellum of Salmonella: Gene Regulation and Protein Export Mechanisms of a Macromolecular Machine
31	Morgan Anne	Feeney	A novel mechanism of translational regulation: de-repression of non-canonical start codons in response to oxidative stress
32	Lorena	Fernández- Martínez	Regulation of microbisporicin biosynthesis in the rare actinomycete Microbispora sp.
33	Silvia	Fernicola	Functional characterization of proteins involved in the homeostasis of the second messenger c-di-GMP to target biofilm formation
34	Vanessa	Francis	Extensive communication between sensor kinases controlling virulence in Pseudomonas aeruginosa
35	Georg	Fritz	Need-based activation of antibiotic resistance by a flux-sensing mechanism
36	Ulrich	Gerland	Dual sensing of a bifunctional receptor
37	Martyna	Gongerowska	The response of Streptomyces coelicolor topA promoter to the changes in DNA supercoiling and heat shock.
	Ralf	Heermann	Novel non-AHL quorum sensing systems in entomopathogenic Photorhabdus bacteria
	Carmen Lucía	Herrera	A biofilm screen for E. coli
40	Seamus	Holden	Much ado about the Z-ring: Investigating the physical mechanisms of bacterial cell division using 3D multi-colour super-resolution microscopy
41	Paul Alan	Hoskisson	Paralogous genes in primary metabolism have distinct physiological roles in antibiotic-producing Streptomyces that expand their adaptive gene networks.
42	Isabelle	Hug	Mechanosensation mediated cyclic di-GMP signaling
43	Cécile	Jourlin- Castelli	Pellicle biogenesis and chemotaxis in Shewanella oneidensis
	Elisabeth	Kay	Cyclic-di-GMP-metabolizing enzymes and nucleoid-associated proteins orchestrate virulence factors expression and delivery, promoting the intracellular survival of Legionella pneumophila at early steps of infection.
	Juhyun	Kim	Visualization of the gene expression flow of the TOL catabolic system of Pseudomonas putida
	Clare	Kirkpatrick	Chemical genetic investigation of a molecular link between bacterial cell polarity and antibiotic resistance
47	Daniel	Kiviet	Direct observation of single cells in Lenski's growth cycle
48	Gisela	Klauck	Spatial organisation of sigma factor activities and c-di-GMP signaling along chemical gradients in macrocolony biofilms of Escherichia coli

İ			
49	Elodie	Lesne	Signal transduction in BvgS, the sensor-kinase regulating Bordetella pertussis virulence
50	Sandra	Lindenberg	C-di-GMP-induced activation of the E. coli csgD promoter by YciR, YdaM, MIrA and RpoS-RNA polymerase operates by a novel mechanism of transcription inititation
51	Xinyao	Liu	A Gene Control System for Cyanobacterium Synechococcus PCC7002 Outdoor Cultivation by using luminescent Dye Shaped Sunlight
52	Nicola	Lorenz	The phosphorylation flow of the Vibrio harveyi quorum sensing cascade determines the level of heterogeneity in the population
53	Jacob	Malone	Control of mRNA translation by a specific ribosomal modification is important for infection and colonisation by plant-associated Pseudomonas species
54	Sylvie	Manuse	Interplay of the serine/threonine kinase StkP and the paralogs DivIVA and GpsB in pneumococcal cell elongation and division
55	Kathleen	Marchal	Network-based eQTL analysis in clonal organisms
56	Anton	Meinhart	Bacterial Toxin Antitoxin systems and their role in cell physiology.
57	Toomas	Mets	MazF and MqsR toxins substantially cleave rRNA and initiate its degradaton by other ribonucleases in Escherichia coli.
58	Gabriele	Micali	Predicting chemical environments of bacteria from receptor signalling
59	Benjamin	Mielich-Süß	Flotillin controls the assembly of protein complexes related to staphylococcal virulence
60	Samantha	Miller	The Bacterial MscS Mechanosensitive Channel Family
61	Audrey	Moine	Functional Organization of a Multimodular Bacterial Chemosensory Apparatus
	Sean	Murray	Understanding Polarity Reversal in Myxococcus xanthus
	Nela	Nikolic	Single-cell analysis of the MazF-mediated stress response in Escherichia coli
	Nikola	Ojkic	The role of cell-wall synthesis and degradation in forespore engulfment in Bacillus subtilis
65		Padmanabhan	Structure-function dissection of CdnL and CarD, two prototypical members of a widespread family of bacterial RNA polymerase interacting proteins, which regulate rRNA and ECF σ-dependent expression, respectively, in Myxococcus xanthus
	Gael	Panis	Bacteriophage ΦCbK hijacks the Caulobacter crescentus cell cycle machinery.
	Anja	Paulick	LIGAND-DEPENDENT INVERSION OF THE THERMOTACTIC RESPONSE IN ESCHERICHIA COLI
	Eva	Pinatel	ChIP-seq and RNA-seq data integration to systematically (re)define the role of NikR in the Helicobacter pylori Transcriptional Regulatory Network
	Frederique	Pompeo	Phosphorylation of the cell division protein GpsB regulates PrkC kinase activity in Bacillus subtilis. The desirion between acute and chronic infection; now players in the GasS multikinase network of Pseudomonas acruginesa.
	Steven	Porter	The decision between acute and chronic infection: new players in the GacS multikinase-network of Pseudomonas aeruginosa
	Jara	Radeck	Interdependence between different layers of the cell envelope stress response in Bacillus subtilis
	Karthik	Rajasekar	Redox sensing mechanism of Zinc binding anti sigma factors.
	Alberto	Reinders	A c-di-GMP Specific Phosphodiesterase Couples Substrate Flux with Transcriptional Activity to Mediate Robust Lifestyle-Switches
	Philippe	Remigi	The genetic basis of phenotypic switching in Pseudomonas fluorescens SBW25
75	Valentina	Rippa	Signal integration at quorum sensing promoters
76	Raúl	Ruiz González	Information Transfer in TetR Transcriptional Regulation
77	Konstanze	Schiessl	Costs of siderophore production in iron-limited environments

		Ĩ	
			De-convoluting the genetic adaptations of E. coli
			C41(DE3) in real-time reveals how alleviating
78	Susan	Schlegel	protein production stress improves yields
79	Hannah	Schramke	Dual K+-sensing controls the kinase/phosphatase switch of the bifunctional receptor KdpD
90	lan	Cabuhmaahar	FIRC controls florallation natterns and contributes to florallar C ring biogenesis
80	Jan	Schuhmacher	FlhG controls flagellation patterns and contributes to flagellar C-ring biogenesis
81	Annina	Schulz	Feeding on compatible solutes: (hydroxy)ectoine degradation in Ruegeria pomeroyi DSS-3
82	Irina	Shkundina	Structure-activity analysis of gyrase inhibitor microcin B.
83	Dorota	Skotnicka	C-di-GMP regulates development of Myxococcus xanthus.
84	Kathrin	Sprecher	A novel cyclic-di-GMP effector modulates surface adhesion of Caulobacter crescentus by adjusting the physical properties of the adhesive holdfast
85	Dobromir	Szadkowski	Analysis of novel Myxococcus xanthus motility regulatory proteins RomX and RomY
0.0	Manain lan	Cantum	DNA topology as assulator of according another liens and anomylation in Strentons as alicelar
86	Marcin Jan	Szafran	DNA topology as regulator of secondary metabolism and sporulation in Streptomyces coelicolor
87	Robin	Tecon	Interaction and self-organization of mutualistic bacterial consortia on hydrated surfaces
			, and the state of
88	Eleftheria	Trampari	Identifying novel effectors of cyclic di-GMP in plant-associated Pseudomonas species
00	William of	T	Description of the supertaining of the supertain Describes as which
89	Kürsad	Turgay	Regulation of thermotolerance development in Bacillus subtilis
90	Sven	Van Teeffelen	Facilitated enzyme diffusion for processive cell-wall insertion
91	Julie	Viala	Involvment of a dedicated acyl carrier protein in the maturation process of a type 3 secretion sytem translocon
92	Kristiina	Vind	A novel signal molecule regulating growth resumption in E. Coli
93	Christopher	Waite	A hierarchy of fine-tuning mechanisms in the regulation of the Pseudomonas syringae Type III Secretion System
93	Christopher	vvaice	A file farcity of file-turning free fiantisms in the regulation of the r seudomonas syringae Type in Secretion System
94	Noreen	Walker	Gene expression noise: How much is explained by growth fluctuations?
95	Jakub	Wiktor	Bacterial cell cycle control by modified CRISPRi system
96	Karina B.	Xavier	Manipulation of the quorum sensing signal AI-2 affects the antibiotic-treated gut microbiota
			- production of the composition
97	Abdelrahim	Zoued	Caught in the act: TssA primes and leads polymerization of the Type VI secretion tail tube and sheath.